
304 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 2, FEBRUARY 2005

Resource Allocation in Communication Networks
Using Abstraction and Constraint Satisfaction

Christian Frei, Boi Faltings, and Mounir Hamdi, Member, IEEE

Abstract—The fundamental issue of quality-of-service (QoS)
routing has triggered a lot of research during the last few years.
However, the proposed algorithms attempt to route communi-
cation demands only on a call by call basis, without taking into
account future traffic. There are nonetheless cases where the traffic
profile is known. In this paper, we address this related problem to
QoS routing, more specifically, the off-line planning of bandwidth
allocation to demands known in advance. Shortest-path routing is
the traditional technique applied to this problem. However, this
can lead to poor network utilization and even congestion. We show
how an abstraction technique combined with systematic search
algorithms and heuristics derived from artificial intelligence make
it possible to solve this problem more efficiently and in much
tighter networks, in terms of bandwidth usage. In addition, this
abstraction technique also allows to explain during search why
some allocation problems are indeed infeasible. Then, the net-
work regions between which bandwidth must be added are then
identified.

Index Terms—Abstraction, constraint satisfaction, con-
straint-based routing, quality-of-service (QoS) routing, resource
allocation.

I. INTRODUCTION

ACENTRAL problem in the field of communications is the
automatic routing of traffic through a network. Currently,

shortest-path (SP) routing, according to some metric, is most
often used to route traffic across a network on a call by call basis.
However, high-speed networks can offer a wide range of ser-
vices to an increasing number of users, with a diverse range of
quality-of-service (QoS) requirements. This has raised the issue
of QoS routing of communication demands: the goal is now not
only to achieve global efficiency in network resource utiliza-
tion, but also to satisfy the QoS requirements of each admitted
connection.

The proposed routing algorithms for this network environ-
ment do not make any assumption about future traffic. However,
there are cases in which the traffic profile is already known. As

Manuscript received December 1, 2003; revised May 15, 2004. This work
was supported in part by the CTI Project 2831.1 in collaboration with Swisscom,
and is partly a result of the Integrated Management for Multimedia Networks
(IMMuNe) Project, supported in part by the Swiss National Science Founda-
tion (FNRS) under Grant 5003-045 311. This paper was presented in part at
INFOCOM 2000, Tel-Aviv, Israel, March 2000. (We note that a patent for the
methods given herein is pending.)

C. Frei is with the ABB Corporate Research Center, CH-5405 Baden,
Switzerland (e-mail: cfrei@acm.org).

B. Faltings is with the School of Computer and Communication Sciences,
Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne,
Switzerland (e-mail: Boi.Faltings@epfl.ch).

M. Hamdi is with the Department of Computer Science, Hong Kong Univer-
sity of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (e-mail:
hamdi@cs.ust.hk).

Digital Object Identifier 10.1109/JSAC.2004.839377

a result, using global information, including not only the avail-
able link capacities but also the expected traffic profile for the
period in question, can lead to routing strategies designed to
minimize congestion and make better use of available network
resources. In this paper, we consider the problem of allocating in
an off-line manner a set of demands known in advance within the
resource capacities of a communication network. This situation
may arise for instance when setting up virtual private networks
in a connection-oriented network [e.g., asynchronous transfer
mode (ATM) and wavelength-division multiplexing (WDM)];
planning the routing of virtual path connections (VPCs) in an
ATM network; planning the routing of virtual channel connec-
tions (VCCs) in the VPC network of an ATM backbone; or op-
timizing the routing tables of an Internet protocol (IP) network.

From the routing point of view, the key resource to manage
in networks is bandwidth. Therefore, in order to make better
use of available network resources, there is a need for planning
bandwidth allocation to communication demands, in order to set
up routing tables (or any other route selection criterion) more
purposefully. We define the problem of resource allocation in
networks (RAIN) as follows.

• Given a network composed of nodes (e.g., switches,
routers) and bidirectional links (e.g., copper wires, optical
fibers), where each link has a given bandwidth avail-
ability, and a set of communication demands to allocate
(the QoS metric that we consider in this paper is band-
width), where each demand is defined by a triplet: (source
node, destination node, and requested bandwidth).

• Find one and only one route for each demand so that the
bandwidth requirements of the demands are simultane-
ously satisfied within the resource capacities of the links.
(Assigning a route to a demand and reserving the resources
needed is called establishing a connection.)

It is important to note that because of technological limita-
tions (for ATM typically) and/or performance reasons, it is im-
possible to divide demands among multiple routes. (Nonethe-
less, when there are several demands between the same end-
points, each of these demands can be allocated over a different
route.)

With this restriction, the RAIN problem is NP-complete in
the number of demands [1]. The RAIN problem is combinato-
rial due mainly to the exponential number of routes in a network.
Suppose the network is simple but complete (this is not even the
worst case, since a communication network is a multigraph: it
allows multiple links between same endpoints) with nodes. A
route is a simple path, its length in number of links is, therefore,
bounded by . Since a route of length has interme-
diate (and distinct) nodes, the number of routes of length is

0733-8716/$20.00 © 2005 IEEE

FREI et al.: RESOURCE ALLOCATION IN COMMUNICATION NETWORKS USING ABSTRACTION AND CONSTRAINT SATISFACTION 305

. The total number of routes between two
nodes is, therefore, equal to . For
instance, in a complete graph with ten nodes, there are 69 281
routes between any pair of nodes.

Currently, most network or service providers use SP-based al-
gorithms, without any backtracking on routing decisions, due to
the complexity of the problem: given an order of the demands,
each demand is assigned the shortest possible route supporting
it, or just skipped if there is no such route. Although the use
of SP routing for each single demand ensures the best possible
route for that particular request, Wang and Crowcroft [2] have
shown that it can lead to suboptimal routing or even highly con-
gested network routing solutions when one considers the net-
work utilization as a whole.

In order to do better, we must allow: 1) other routes than
the shortest paths and 2) backtracking to previous allocations
in order to squeeze in more demands. Basically, two types of
algorithms can be used to solve the RAIN problem: incomplete
and complete methods. Incomplete algorithms, such as the SP
method, explore only partially the search space, i.e., they only
consider a subset of possible routes. These algorithms are gen-
erally fast, however, they are not guaranteed to find a solution if
there is one. On the other hand, complete algorithms perform an
exhaustive search, and thereby do always find a solution if one
exists. However, due to the huge search space, their worst case
behavior is exponential. There is, therefore, a need for heuris-
tics to guide the search, in order to solve most problem instances
in a reasonable amount of time. To achieve that, we make use
of constraint satisfaction techniques in conjunction with novel
abstraction methods to solve the RAIN problem using complete
search algorithms.

Constraint satisfaction [3] is an artificial intelligence tech-
nique which has been shown to work well for solving a variety of
NP-hard problems [4]. A constraint satisfaction problem (CSP)
is defined by a triple , where is
a set of variables, a set of finite domains
associated with the variables, and a set of
constraints. The domain of a variable is the set of all values that
can be assigned to that variable. A constraint between variables
restricts the combinations of values that can be assigned to those
variables. Indeed, the RAIN problem is easily formulated as a
CSP in the following way: variables are demands, the domain
of each variable is the set of all routes between the endpoints
of the demand, and constraints on each link must ensure that
the resource capacity is not exceeded by the demands routed
through it. A solution is a set of routes, one for each demand,
respecting the capacities of the links. However, this formulation
presents severe complexity problems, because of the exponen-
tial number of routes. It is thereby too expensive to compute,
represent, and store the domain of a variable, i.e., all the routes
that join the endpoints of a demand.

In this connection, we show how an abstraction of the network
called blocking islands (BIs), create a compact representation
of the domains which allows the application of CSP techniques
such as forward checking, variable and value ordering to the
RAIN problem with manageable complexity. In the following
section, we review some of the related work. In Section III, we
briefly present the BI paradigm and outline its major properties.

Section IV illustrates how BIs help to route a single demand,
while attempting to preserve bandwidth connectivity inside the
network. In Section V, we present a generic algorithm and some
heuristics to solve the RAIN problem. Section VI examines how
BI abstractions allow to prove in some cases that the problem is
infeasible by identifying global bottlenecks in the network, or
to identify culprit assignments of routes to demands that prevent
the allocation of another demand. Empirical results are summa-
rized in Section VII. The BI paradigm is generalized to multiple
link constraints in Section VIII. Applying the abstraction tech-
nique to the routing and wavelength assignment problem in op-
tical networks is explored in Section IX. Section X concludes
the paper.

II. RELATED WORK

Surprisingly, there has been little published research on
the RAIN problem defined in this paper. Currently, most net-
work providers use (incomplete) SP methods, as described in
Section I, due to the complexity of the problem.

Operation research (OR) techniques are also applied to the
RAIN problem. Most often, a fixed number of shortest paths
for each demand are precomputed, and the problem is solved
using linear programming with very large constraint systems
of equations [5]–[7]. However, since only a given number of
routes are considered, these techniques are not guaranteed to
find a solution if one exists. Moreover, OR techniques are not
as flexible as CSP-based methods.

Mann and Smith [8] search for routing strategies that attempt
to ensure that no link is overutilized (hard constraint) and, if
possible, that all links are evenly loaded (below a fixed target
utilization), for the predicted traffic profile. Then, they attempt
to minimize the communication costs. Genetic algorithms and
simulated annealing approaches were used to develop such
strategies. However, their methods do not apply well, if not at
all, to highly loaded networks, mainly because the multicriteria
objective function they use cannot ensure that the hard con-
straint, i.e., no link is overutilized, is respected in every case.
Moreover, we think that load balancing should be viewed in
terms of bandwidth connectivity and not the even distribution of
the load among the links, especially in highly loaded networks,
since high bandwidth connectivity allows to route additional
demands without having to recompute a complete solution.

To the best of our knowledge, the closest published work to
ours is the CANPC framework [9]. It is based on the succes-
sive allocations of shortest routes to demands, without any back-
tracking when an assignment fails. They propose several heuris-
tics to order the demands (such as bandwidth ordering) to pro-
vide better solutions, i.e., to route more demands. They are cur-
rently developing an optimization tool that takes the partial solu-
tion as input to try to allocate all demands. Results will demon-
strate that the methods we propose clearly outperform theirs.

Wang and Crowcroft [10] proved that the allocation of every
single demand is NP-hard by itself, when demands are subject
to multiple additive or multiplicative QoS criteria (such as delay
and loss probability). This triggered much research during the
last years and the proposed QoS routing algorithms are mainly
variations of the SP method [11].

306 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 2, FEBRUARY 2005

Fig. 1. BIH for resource requirements f64; 56;16g. The weights on the links are their available bandwidth. Abstract nodes’ description include only their node
children and network node children in brackets. Link children (of BIs and abstract links) are omitted for more clarity, and the 0-BI is not displayed since equal to
N . (a) 16 K-BIG. (b) 56 K-BIG. (c) 64 K-BIG. (d) Network.

Vedantham and Iyengar [12] prove that the problem of
effective bandwidth utilization in the ATM network model is
NP-complete. In the situation where there are more incoming
calls than available bandwidth, they also propose the use of
genetic algorithms for maximizing the revenue.

Abstraction and reformulation techniques have already
been applied to permit more efficient solution of a CSP (not
specifically applied to communication networks). Choueiry
and Faltings [13] relate interchangeability to abstraction in the
context of a decomposition heuristic for resource allocation.
Weigel and Faltings [14] cluster variables to build abstraction
hierarchies for configuration problems viewed as CSPs, and
then use interchangeability to merge values on each level of
the hierarchy. Freuder and Sabin [15] present abstraction and
reformulation techniques based on interchangeability to im-
prove solving CSPs. A recent collection of papers addressing
abstraction, reformulation, and approximation techniques can
be found in [16].

III. BLOCKING ISLAND (BI) PARADIGM

Before the presentation of our proposed method to the RAIN
problem, we first overview the BI paradigm which is key to our
solution to this problem. Frei and Faltings [17] introduced a

clustering scheme based on BIs, which can be used to represent
network bandwidth availability at different levels of abstraction,
as a basis for distributed problem solving. A -blocking island
(-BI) for a node is the set of all nodes of the network that
can be reached from using links with at least available re-
sources, including . Fig. 1(d) shows all 64-BIs for a network.
Note that some links inside a -BI, i.e., the links that have both
endpoints in the -BI, may have less than available resources.
In such a case, it simply means that there is another route with
available resources between the link’s endpoints. As a matter of
fact, link has both endpoints in 64-BI but has less than
64 available resources. However, there are at least 64 available
resources along route .

-BIs have some fundamental properties, discussed in detail
in [1]. Given any resource requirement, BIs partition the net-
work into equivalence classes of nodes. The BIs are unique,
and identify global bottlenecks, that is, inter-BI links. If inter-BI
links are links with low remaining resources, as some links in-
side BIs may be, inter-BI links are links for which there is no
alternative route with the desired resource requirement. More-
over, BIs highlight the existence and location of routes at a given
bandwidth level.

Proposition 1—Route Existence Property: There is at least
one route satisfying the resource requirement of an unallocated

FREI et al.: RESOURCE ALLOCATION IN COMMUNICATION NETWORKS USING ABSTRACTION AND CONSTRAINT SATISFACTION 307

Fig. 2. Abstraction tree of the BIH of Fig. 1 (links are omitted for clarity), as
well as the mapping the SP and the LL routes onto the abstraction tree.

demand if and only if its endpoints and are
in the same -BI. Furthermore, all links that could form part
of such a route lie inside this BI.

Finally, the inclusion property states that for any , the
-BI for a node is a subset of the -BI for the same node.
BIs are used to build the -blocking island graph (-BIG), a

simple graph representing an abstract view of the available re-
sources: each -BI is clustered into a single node and there is an
abstract link between two of these nodes if there is a link in the
network joining them. Fig. 1(c) is the 64-BIG of the network of
Fig. 1(d). An abstract link between two BI’s clusters all links
that join the two BIs, and the abstract link’s available resources
is equal to the maximum of the available resources of the links it
clusters (since a demand can only be allocated over one route).
These abstract links denote the critical links, since their avail-
able resources do not suffice to support a demand requiring
resources.

In order to identify bottlenecks for different s, e.g., for typ-
ical possible bandwidth requirements, we build a recursive de-
composition of BIGs in decreasing order of the requirements:

. This layered structure of BIGs is a
blocking island hierarchy (BIH). The lowest level (LL) of the
BIH is the -BIG of the network graph. The second layer is
then the -BIG of the first level, i.e., -BIG, the third layer
the -BIG of the second, and so on. On top of the hierarchy
there is a 0-BIG abstracting the smallest resource requirement

. The abstract graph of this top layer is reduced to a single
abstract node (the 0-BI). Fig. 1 shows such a BIH for resource
requirements . The graphical representation shows
that each BIG is an abstraction of the BIG at the level just below
(the next biggest resource requirement), and, therefore, for all
lower layers (all larger resource requirements).

A BIH cannot only be viewed as a layered structure of
-BIGs, but also as an abstraction tree when considering the

father–child relations. In the abstraction tree, the leaves are
network elements (nodes and links), the intermediate vertices
either abstract nodes or abstract links and the root vertex, the
0-BI of the top level in the corresponding BIH. Fig. 2 is the
abstraction tree of the BIH in Fig. 1.

The -BI for a given node of a network graph can be ob-
tained by a simple greedy algorithm, with a linear complexity
of , where is the number of links. The construction
of a -BIG is straightforward from its definition and is also
linear in . A BIH for a set of constant resource require-
ments ordered decreasingly is easily obtained by recursive calls
to the BIG computation algorithm. Its complexity is bound by

, where is the number of different resource require-
ments. The adaptation of a BIH when demands are allocated or
deallocated can be carried out incrementally with complexity

. Therefore, since the number of possible bandwidth re-
quirements is constant, all BI algorithms are linear in the
number of links of the network.

A BIH contains at most BIs: one BI for each node at
each bandwidth requirement level plus the 0-BI. In that worst
case, there are links at each bandwidth
level, since multiple links between the same BIs are clustered
into a single abstract link. The memory storage requirement of
a BIH is, thus, bound by .

A BIH summarizes the available resources given the currently
established connections at time . As demands are allocated or
deallocated, available resources on the links change and the BIH
may need to be modified to reflect this. The changes can be car-
ried out incrementally, only affecting the BIs which participate
in the demand which is being allocated or deallocated, again
with complexity [1]. They mainly amount to splitting or
merging BIs. These incremental algorithms may also be applied
to update the BIH in case of link failure, changes in link prop-
erties, introduction of new bandwidth requirements or removal
of existing ones, or even network topology modifications.

IV. ROUTING FROM A BI PERSPECTIVE

Consider the problem of routing a single demand
in the network of Fig. 1(d). Since and

are clustered in the same 16 K-BI , we know that at least
one route satisfying exists. Classical wisdom would select
the shortest route, that is the route . However,
allocating this route to in this example is not a good idea,
since it uses resources on two critical links in terms of avail-
able bandwidth, that is and : these two links join
64 K-BI’s and in the 64 K-BIG of Fig. 1(c). After that
allocation, no other demand requiring 16 K (or more) between
any of the nodes clustered by 56 K-BI and one of the nodes
inside 56 K-BI can be allocated anymore. For instance, a
demand is then impossible to allocate. A better way
to route is , since uses only links
that are clustered at the LL in the BIH, that is in 64 K-BI ,
and no critical links (that is inter-BI links).

is a route that satisfies the LL heuristic. Its principle is
to route a demand along links clustered in the lowest BI clus-
tering the endpoints of the demand, i.e., the BI for the highest
bandwidth requirement containing the endpoints. This heuristic
is based on the following observation: the lower a BI is in the
BIH, the less critical are the links clustered in the BI. By as-
signing a route in a lower BI, a better bandwidth connectivity

308 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 2, FEBRUARY 2005

preservation effect is achieved, therefore reducing the risk of fu-
ture allocation failures. Bandwidth connectivity can, therefore,
be viewed as a kind of overall load-balancing.

Another way to see the criticalness of a route is to consider
the mapping of the route onto the abstraction tree of Fig. 2:
is by far then the longest route, since its mapping traverses BI’s

, and then back; traverses only BI .
, therefore, affects not only critical links at higher level than
, but also many more BIs, and its allocation may cause to

split each one of them. This observation (also) justifies the LL
heuristic.

Even better, a BIH also gives the means to compare a priori
equivalent routes in order to decide for the “best” one, besides
the length criterion. The minimal splitting (MS) heuristic selects
the route that causes the fewest splittings of BIs in the BIH:
obviously, the more splittings, the more links become critical,
leading to more allocation failures of demands. MS has, there-
fore, an even greater bandwidth connectivity preservation ef-
fect than LL. Unfortunately, only an approximation of the MS
heuristic can effectively be used in practice, since an exact im-
plementation of MS requires to compute all routes beforehand
in order to compare them. A possible implementation is to com-
pute a given number of routes using LL, and then to order them
according to the MS heuristic to select a route. The evaluation
of the MS heuristic is left for a later paper.

Widest path routing has been proposed as an alternative to SP
routing. For instance, Wang and Crowcroft [10] advocate the use
of shortest-widest path (WP) for hop-by-hop routing algorithms.
This strategy is to find a route with maximum bottleneck band-
width (a WP), and when there are more than one WP, choose
the one with shortest propagation delay (in our case the number
of hops). In routing the same demand as above, WP would
select the route , a route longer than

or . Therefore, even if it attempts to distribute the load
by avoiding as much as possible bottleneck links, WP may se-
lect a very long route, thereby using a lot of resources globally.
However, WP performed very poorly in our experiments, as ex-
pected, and we will not report it on solving the RAIN problem.
We show nonetheless its behavior in the case of QoS routing
(Section VII-C).

Because of its characteristics, LL can be viewed as a mixture
of SP and WP.

V. AUTOMATICALLY SOLVING A RAIN PROBLEM

Solving a RAIN problem amounts to solving the CSP intro-
duced in Section I. This can be done using a backtracking al-
gorithm with forward checking (FC) [3], a systematic search
process. Such an algorithm maintains a partial solution (initially
empty) which satisfies all the constraints and attempts to extend
it to a full solution. Its basic operation is to pick one variable (de-
mand) at a time, assign it a value (route) from its domain, and
propagate the effect of this assignment (using the constraints) to
the future variables by removing any inconsistent values from
their domain. If the domain of a future variable becomes empty,
the current assignment is undone, the previous state of the do-
mains is restored, and an alternative assignment, when avail-
able, is tried. If all possible instantiations fail, backtracking to

the previous past variable occurs. FC proceeds in this fashion
until a complete solution is found or all possible assignments
have been tried unsuccessfully, in which case there is no solu-
tion to the problem.

The formulation of the CSP presents severe complexity
problems (the exponential number of routes for a demand—see
Section I). Nonetheless, BIs provide an abstraction of the
domain of each demand, since any route satisfying a demand
lies within the -BI of its endpoints, where is the resource
requirement of the demand (Proposition 1). Therefore, if the
endpoints of a demand are clustered in the same -BI, there is
at least one route satisfying the demand. We do not know what
the domain of the variable is explicitly, i.e., we do not know the
set of routes that can satisfy the demand; however, we know
it is nonempty. In fact, there is a mapping between each route
that can be assigned to a demand and the BIH: a route can be
seen as a path in the abstraction tree of the BIH. Thus, there is
a route satisfying a demand if and only if there is a path in the
abstraction tree that does not traverse BIs of a higher level than
its resource requirement. For instance, from the abstraction tree
of Fig. 2, it is easy to see that there is no route between and

with 64 available resources, since any path in the tree must at
least cross BIs at level 56.

We use this mapping of routes onto the BIH to formulate a
forward checking criterion, as well as dynamic value ordering
and dynamic variable ordering heuristics.

A. Forward Checking (FC)

Thanks to the route existence property, we know at any point
in the search if it is still possible to allocate a demand, without
having to compute a route: if the endpoints of the demand are
clustered in the same -BI, where is the resource requirement
of the demand, there is at least one, i.e., the domain of the vari-
able (demand) is not empty, even if not explicitly known. There-
fore, after allocating a demand, forward checking is performed
first by updating the BIH, and then by checking that the route
existence property holds for all uninstantiated demands. If the
latter property does not hold at least once, another route must
be tried for the current demand. Domain pruning is, therefore,
implicit while maintaining the BIH.

B. Value Ordering

A backtracking algorithm involves two types of choices: the
next variable to assign (see Section V-C), and the value to as-
sign to it. As illustrated above, the domains of the demands are
too big to be computed beforehand. Instead, we compute the
routes as they are required. In order to reduce the search effort,
routes should be generated in the “most beneficial” order, so as
to increase the efficiency of the search, that is, try to allocate
the route that will less likely prevent the allocation of the re-
maining demands. A natural heuristic is to generate the routes
in SP order, since the shorter the route, the fewer resources will
be used to satisfy a demand.

However, Section IV shows how to do better using a kind of
min-conflict heuristic, the LL heuristic. Applied to the RAIN
problem, it amounts to considering first, in shortest order, the
routes in the lowest BI (in the BIH). Apart from attempting
to preserve bandwidth connectivity, the LL heuristic allows to

FREI et al.: RESOURCE ALLOCATION IN COMMUNICATION NETWORKS USING ABSTRACTION AND CONSTRAINT SATISFACTION 309

Fig. 3. Selecting the next demand to allocate using DVO-HL and DVO-NL.
The DVO-HL line shows the value of the lowest common father level for each
demand. The DVO-NL line shows the number of levels between the lowest
common father and the bandwidth requirement level. The selected demand by
each heuristic is shaded in gray.

achieve a computational gain: the lower a BI is, the smaller it is
in terms of nodes and links, thereby reducing the search space
to explore. Moreover, the LL heuristic is especially effective
during the early stages of the search, since it allows to make
better decisions and, therefore, has a greater pruning effect on
the search tree, as shown by the results in Section VII.

C. Variable Ordering

The selection of the next variable to assign may have a strong
effect on search efficiency, as shown by Haralick and Elliot [18].
A widely used variable ordering technique is based on the “fail-
first” principle: “To succeed, try first where you are most likely
to fail.” The idea is to minimize the size of the search tree and to
ensure that any branch that does not lead to a solution is pruned
as early as possible when choosing a variable.

There are some natural static variable ordering (SVO) tech-
niques for the RAIN problem, such as first choose the demand
that requires the most resources. Nonetheless, BIs allow dy-
namic (that is during search) approximation of the difficulty of
allocating a demand in more subtle ways by using the abstrac-
tion tree of the BIH.

• DVO-H Highest Level: First choose the demand whose
lowest common father of its endpoints is the highest in
the BIH (remember that high in the BIH means low in re-
sources requirements). The intuition behind DVO-HL is
that the higher the lowest common father of the demand’s
endpoints is, the more constrained (in terms of number
of routes) the demand is. Moreover, the higher the lowest
common father is, the more allocating the demand may re-
strict the routing of the remaining demands (fail-first prin-
ciple), since it will use resources on more critical links.

• DVO-N Number of Levels: First choose the demand for
which the difference in number of levels (in the BIH)
between the lowest common father of its endpoints and
its resources requirements is lowest. The justification of
DVO-NL is similar to DVO-HL.

The behavior of DVO-HL and DVO-NL are illustrated in
Fig. 3. In the implementation, both heuristics use the required
bandwidth as a secondary criterion to break ties: in case two or
more demands have the same value for the criterion, the one with

Fig. 4. Forward checking algorithm FCRAIN for the RAIN problem. Its input
is threefold: D is the set of still unallocated demands, � the set of established
connections, and H the current BIH. It returns either a set of connections � (a
solution) or ; (in which case there is no solution).

highest requirement is preferred. Besides obeying the fail-first
principle, this secondary criterion attempts to minimize one side
effect of the LL heuristic for route selection: by avoiding the
routing through critical links, LL may cause the split of BIs at
very low levels in the hierarchy, i.e., for high bandwidth require-
ments, thereby preventing the allocation of demands with high
requirements.

There are numerous other dynamic variable ordering (DVO)
heuristics that can be derived from analyzing the BIH. For in-
stance, let -BI be the blocking island clustering the endpoints
of a demand at its bandwidth requirement level . Then, se-
lect first the demand for which the -BI contains the fewest
nodes. This heuristic is called DVO-N. It follows the fail-first
principle, since one can assume that the fewer nodes are, the
fewer routes connect the endpoints of the demand. Two similar
heuristics, with same justification, are to select first the demand

for which the -BI contains the fewest links (DVO-L) or the
lowest link density (DVO-D). An evaluation of these heuristics
(and others) can be found in [1].

D. FC Algorithm for the RAIN Problem

Now that the different parts of the RAIN problem have been
examined, we can put everything together into a systematic
search algorithm. Fig. 4 shows a pseudocode for a recursive
FC backtracking algorithm FCRAIN. FCRAIN can be ex-
plained as follows: if there are still unallocated demands, it
selects the next demand to allocate using a dynamic demand
ordering heuristic (Section V-C). NextBestRoute computes the
best route according to the dynamic route ordering heuristic
(Section V-B). FCRAIN then performs FC: it verifies that all
remaining unallocated demands can still be allocated, using
generic function ExistsRouteForAll. The latter checks that all
unallocated demands have both endpoints in the same BI at their
bandwidth requirement level (as explained in Section V-A). If it

310 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 2, FEBRUARY 2005

is the case, it recursively allocates the next demand. Otherwise,
the current allocation is undone, and the best next route is
tried. If all routes have been tried unsuccessfully, backtracking
to the previously allocated demand occurs. This amounts to
deallocating the current demand and the previously allocated
demand, and selecting for the latter the next best route. In order
to be able to compute the next best route, the state of the route
generators (one for each demand already allocated) is saved,
so that when backtracking occurs, the search process can be
resumed to get to the next best solution. Obviously, the route
generator of a demand from which we backtrack is discarded:
when that demand has to allocated again, a new route generator
is started for that demand.

For the algorithm in Fig. 4, the worst case complexity is ex-
ponential in the number of demands, since we perform a back-
track search over them. However, the average case complexity
is much lower, as has been shown in general for the backtrack
search using CSP heuristics in constraint satisfaction problems.

VI. CONFLICT IDENTIFICATION AND RESOLUTION

BIs, and especially BIGs, identify global bottlenecks in the
network, as shown for instance in Fig. 1(c) for 64 demands.
The abstraction of the network into BIs allow to take measures
when a demand cannot be allocated (because its endpoints are
not clustered in the same BI at its bandwidth requirement level).

Suppose a set of demands were allocated in the network
and that the network’s available resources is given by Fig. 1(d).
Now, we are to allocate a new demand . Since
and are not clustered in the same 64-BI, it is impossible to sat-
isfy without rerouting some previously allocated demands.
There are two cases.

Case 1) It may be that the problem of allocating
is in fact unsolvable.

Case 2) Rerouting one or more already allocated demands
may resolve the problem.

A. Unresolvable Problem Identification

Given the situation explained above where cannot be al-
located, it is possible, in some cases, to prove that the RAIN
problem is unsolvable by approximating it with a network mul-
tiflow problem. If there is any cut in the network whose capacity
is smaller than the sum of the bandwidth requirement of the de-
mands that have one endpoint on each side of the cut. However,
there is an exponential number of possible cuts in a network
and examining them all is intractable. Nonetheless, BIs identify
critical parts of the network and, therefore, it is a good idea to
restrict the search for infeasibility to only the cocycle1 of some
BIs.

We call primary blocking islands (PBI) of a demand that
cannot be allocated the two BIs of its endpoints at its bandwidth
requirement level. For , the PBIs are and . If for any
of the two PBIs the sum of the bandwidth requirements of the
demands that have one and only one endpoint inside the PBI is
higher than the capacity of the links of the PBI’s cocycle, then

1The cocycle of a subset of nodes A is the set of all links that have one and
only one endpoint in A.

it is obvious that the problem is infeasible. We call this unre-
solvable conflict detection (UCD). Search can then be aborted,
thereby saving a lot effort. Note that if a problem is infeasible,
it does not mean that unsolvability can be always be proven that
way, because the RAIN problem is not a network flow problem.
By examining only the PBIs of demands that cannot be allo-
cated, we overcome the intractability issue raised above, while
still being able to find such a cut with high probability.

Moreover, when the problem can be proven infeasible, the
BIH helps the human operator in deciding where to add band-
width resources, since global bottlenecks are identified. In the
above case, in order to be able to satisfy , we have to add
bandwidth resources between the two PBIs, that is between one
node of and one node of , since routing inside the BIs of
the bandwidth requirement level does not pose any problem. For
instance, suppose the network is the one of a service provider.
Depending on link prices, the service provider may buy some
more resources from a network operator either between and

, or directly between and (link addition), or even along a
longer path, for instance between and , and and . The BI
then provide meaningful abstractions of the network by hiding
“easy” parts of the network and only showing to a human user
the real problems.

B. Culprit Assignment Identification

In a classical backtracking algorithm, when a dead-end is
reached, the most recent assignment is undone and an alternate
value for the current variable is tried. In case all values have been
unsuccessfully assigned, backtracking occurs to the preceding
allocation. However, if we have the means to identify a culprit
assignment of a past variable, we can directly backjump to it
(the intermediate assignments are obviously undone), thereby
possibly drastically speeding up the search process [19].

In case infeasibility cannot be proven when a dead-end is
reached while solving a RAIN problem, analyzing the situation
on the links of the PBI’s cocycle indeed helps to identify a cul-
prit assignment. In this case, we either find that one or more de-
mands were at fault by being routed through at least one link
on the BI’s cocycle, or that there is in fact no solution. The
latter cannot be established, however, a culprit assignment can
be identified by analyzing the demands routed over the cocycle
of the PBI. There are two possibilities.

1) The sum of the bandwidth requirements of all unallocated
demands that have one and only one endpoint in the PBI is
less than the sum of the available bandwidth on the links of
the PBI’s cocycle. This means that there is at least one al-
ready allocated demand that is routed over more than one
link of the PBI’s cocycle, thereby using up many critical
resources. We, therefore, have to backjump to the point in
the search where the total available bandwidth on the co-
cycle was enough to support all unallocated demands that
have one and only one endpoint in the PBI.

2) Reallocating some of the demands that are routed over the
PBI’s cocycle over different routes may suffice to solve
the problem. Therefore, the most recent culprit assign-
ment is the latest demand that is routed over the PBI’s
cocycle.

FREI et al.: RESOURCE ALLOCATION IN COMMUNICATION NETWORKS USING ABSTRACTION AND CONSTRAINT SATISFACTION 311

VII. EMPIRICAL RESULTS

We report here some empirical results on solving feasible and
impossible RAIN problems, as well as in a centralized on-line
QoS routing scenario. We further introduce an a priori order
parameter that attempts to capture the difficulty of solving a
RAIN problem. All results were obtained on a Sun Ultra 60 with
a LISP program.

A. Solving Feasible RAIN Problems

In practice, the RAIN problem poses itself in the following
way. A network or service provider receives a request from
the customer to allocate a number of demands, and must de-
cide within a certain time decision threshold whether and how
the demands can be accepted. The tradeoff we must consider
is then completeness (that is satisfying all users if possible in
order to ensure customer satisfaction) versus time efficiency
(customers require an answer in a reasonable amount of time),
and hereby complete versus incomplete algorithms. A mean-
ingful analysis of the performance of the heuristics we propose
would, thus, analyze the probability of finding a solution within
a given time limit, and compare this with the performance that
can be obtained using conventional methods, in particular SP
algorithms. For comparing the efficiency of different constraint
solving heuristics, it is useful to plot their performance for prob-
lems of different tightness. In the RAIN problem, tightness is de-
fined as the ratio of resources required for the best possible allo-
cation (in terms of used bandwidth) divided by the total amount
of resources available in the network. Since it is very hard to
compute the best possible allocation, we use an approximation,
the best allocation found among the methods being compared.

We generated 23 000 instances of RAIN problems, each with
at least one solution. Each problem has a randomly generated
network topology of 20 nodes and 38 links, and a random set
of 80 demands, each demand characterized by two endpoints
and a bandwidth constraint. A solution must allocate all de-
mands within the bandwidth capacities of the links. No other
restriction was imposed on the routes. We especially assume no
hop-by-hop routing table constraints for instance. A solution is,
thus, applicable to a connection-oriented network such as ATM.
The problems were solved with six different strategies: basic-SP
performs a search using the SP heuristic, without any back-
tracking on decisions; BT-SP incorporates backtracking in order
to be able to undo “bad” allocations. The next search methods
make use of the information derived from the BIH: BI-LL-HL
uses the LL heuristic for route generation and DVO-HL for dy-
namic demand selection, whereas BI-LL-NL differs from the
latter in using DVO-NL for choosing the next demand to al-
locate. BI-BJ-LL-HL and BI-BJ-LL-NL differ from the previous
ones in the use of backjumping to culprit decisions, as described
in Section VI-B.

Fig. 5(a) gives the probability of finding a solution to a
problem in less than 1 s, given the tightness of the problems. BI
search methods prove to perform much better than brute-force,
even on these small problems, where heuristic computation
(and BIH maintenance) may proportionally use up a lot of
time. Backjumping methods show slightly better performance
over their purely backtracking counterparts. The benefits of

backjumping seem to be somewhat canceled by the computing
overhead associated with calculating the culprit assignment,
at least on these small problems. On problems of much larger
size, we noticed that BJ algorithms do perform much better in
average than their nonbackjumping counterparts. Noteworthy,
NL outperforms HL: NL is better at deciding which demand
is the most difficult to assign and, therefore, achieves a greater
pruning effect. The shape of the curves are similar for larger
time limits.

Fig. 5(b) provides the probability of solving a problem ac-
cording to runtime. Two conclusions can be derived. First, BI
methods curves continue to grow with time, albeit slowly, which
is not the case for basic-SP (and obviously BT-SP). Second,
maintaining the BIH on these small problems does not affect
the BI algorithms very much. The quality of the solutions, in
terms of network resource utilization, were about the same for
all methods. However, when the solutions were different, band-
width connectivity was generally better on those provided by BI
methods.

The experimental results allow us to quantify the gain ob-
tained by using our methods. If an operator wants to ensure high
customer satisfaction, demands have to be accepted with high
probability. This means that the network can be loaded up to
the point where the allocation mechanism finds a solution with
probability close to 1. From the curves in Fig. 5, we can see that
for the SP methods, they allow up to a load of about 40% with
a probability of 0.9, whereas the NL heuristic allows a load of
up to about 55%. Using this technique, an operator can, thus,
reduce the capacity of the network by an expected 27% without
a decrease in the QoS provided to the customer!

In addition, the relative performance can be expected to scale
in the same way to large networks. This is corroborated by the
results on larger problems. We generated 6000 different RAIN
problems with 38 nodes, 107 links, and 1200 demands. The
probability of solving such a problem according to runtime is
given in Fig. 6. Here, we see that the maintenance of the BIH has
a larger effect on solving “easy” problems. However, after 20 s
of runtime, the BI methods clearly are more efficient than the
non-BI techniques. The facts noticed for the smaller problems
(Fig. 5) remain valid: NL outperforms HL, even if it requires
slightly more runtime, and backjumping brings only a small ad-
vantage over their nonbackjumping counterparts. Further, as an
aside result, BI-BJ-LL-NL solved a much larger RAIN problem
(50 nodes, 171 links, and 3000 demands) in 4.5 min. BT-SP was
not able to solve it within 12 h.

The advantages of the BI methods over naive SP allocation
are best illustrated when searching all solutions of a RAIN
problem, as shown in the comparisons of Table I for a small
problem. Thanks to their much better pruning power and more
purposeful search guidance heuristics, they are much faster
(about 20 times), generate fewer routes (between 48 and 74
times), and backtrack even less (between 78 and 188 times).

B. Performance Evaluation on Infeasible RAIN Problems

In order to test the capability of identifying in some cases
that a RAIN problem is infeasible, we generated problems
using an existing network topology, and randomly generated

312 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 2, FEBRUARY 2005

Fig. 5. Statistics on solving 23 000 randomly generated solvable problems with 20 nodes, 38 links, and 80 demands each. (a) Probability of finding a solution
within 1 s, given the tightness of the problems. (b) Probability of solving the problems according to runtime.

demands until we could prove that it was infeasible (within 20
min of runtime), either by identifying an unresolvable conflict
(as described in Section VI-A), or by having to explore the
whole search space. The network topology used is the FUDI
subnetwork.2 covering the main cities in Europe. It comprises
12 nodes and 14 links, each link with a bandwidth capacity
between 6 and 34 Mb/s.

2See http://www.caida.org/Tools/Mapnet/Backbones.

We generated two sets of problems based on the FUDI sub-
network.3

• For the 300 problems of the FUDI 1 set, we randomly gen-
erated demands with relatively high bandwidth require-
ments with respect to the link capacities. The bandwidth
requirement of a demand was uniformly distributed in

(Mb/s). For each problem, there are be-
tween 20 and 24 demands. The maximal bandwidth a de-

3There are no “trivial” unsolvable problems in these sets, such as a node for
which the total bandwidth capacity of the links adjacent to the node exceeds the
total requirement of the demands of which the node is an endpoint.

FREI et al.: RESOURCE ALLOCATION IN COMMUNICATION NETWORKS USING ABSTRACTION AND CONSTRAINT SATISFACTION 313

Fig. 6. Probability of solving a problem according to runtime (6000 problems, with 38 nodes, 107 links, and 1200 demands).

mand could ask for is, therefore, higher than the lowest
link capacity. The goal was to make it easier for the BT-SP
algorithm to identify the problems as impossible. These
problems can be considered as “easy,” since their search
space is small.

• The FUDI 2 set of 300 problems is intended to
be more difficult to solve. The bandwidth require-
ments of the demands are much smaller com-
pared with the link capacities. The bandwidth re-
quirement of a demand is uniformly distributed in

(Mb/s).
There are between 78 and 164 demands for each problem.
The search space of these problems is, therefore, much
bigger than for those of the first set.

We compare the same algorithms as in Section VII-A, but
instead of BI-LL-HL and BI-LL-NL, we use BI-U-LL-HL and
BI-U-LL-NL, which are the same as BI-LL-HL and BI-LL-NL,
respectively, however, incorporating unresolvable conflict de-
tection (UCD). Note that BJ methods incorporate UCD. Basic
SP is not taken into account here, since it does not perform a
complete search and, therefore, cannot prove that a problem
is unsolvable. Recall that BT-SP must perform an exhaustive
search in order to conclude that the problem has no solution.

The percentage of problems identified infeasible according
to runtime is given in Fig. 7. Fig. 7(a) displays the statistics for
FUDI 1 set, and Fig. 7(b) displays the results for FUDI 2 set.
For the set of easy problems [FUDI 1 set—see Fig. 7(a)], we
also display the percentage of problems identified as impossible
thanks to the UCD mechanism. Since these statistics are very
close for nonbackjumping and backjumping algorithms, only
those for BI-U-LL-HL and BI-U-LL-NL are depicted. The UCD

TABLE I
COMPARISON IN TERMS OF RUNTIME(S), GENERATED ROUTES, AND

BACKTRACKS OF A BRUTE-FORCE BACKTRACKING METHOD TO

BI-BASED SEARCH METHODS WHEN FINDING ALL SOLUTIONS

(6504) ON A SMALL RAIN PROBLEM (A LEASED-LINE NETWORK),
WITH 8 NODES, 9 LINKS, AND 18 DEMANDS

mechanism performs only slightly better with the backjumping
algorithms (BI-BJ-LL-HL and BI-BJ-LL-NL). The difference
between the UCD curve and the curve of the associated solving
method identify the percentage of problems proven infeasible
by exhaustive search.

BI-based algorithms with UCD logically outperform BT-SP,
which has to perform an exhaustive search before declaring a
problem unsolvable. The performance of BT-SP is only accept-
able on the easy problems (FUDI 1 set), where the search space
is reasonable in size. On the second set of problems (FUDI 2
set), the search space gets too big to be manageable by BT-SP
despite the small network size. Even after 6 mins, not a single
problem was declared unsolvable by this method. The size of the
search space for the problems of FUDI 2 set also prevents the ex-
haustive search by Bl-based algorithms within 6 min. Bl-based
algorithms without UCD (which are not displayed in Fig. 7) are
only slightly better than BT-SP on the FUDI 1 set, albeit slower
in their increase. This is due to the computing overhead when
maintaining the BIH. On the FUDI 2 set, no Bl-based algorithm
without UCD was able to determine a problem as unsolvable.

The UCD mechanism is very fast. On the FUDI 1 set, most
problems declared impossible by means of UCD are within 8 s.

314 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 2, FEBRUARY 2005

Fig. 7. Percentage of problems identified as infeasible according to runtime by different search methods. (a) The 300 problems of the FUDI 1 set; the percentage
of problems identified as unsolvable thanks to the UCD mechanism is also depicted for BI-U-LL-HL and BI-U-LL-NL. (b) The 300 problems of the FUDI 2 set;
every problem that was declared infeasible was also thanks to the UCD mechanism.

From then on, UCD then grows only very slowly. On the FUDI 2
set, UCD happens within the first second. It then increases only
slightly (0.8%) for HL methods until 9 s elapsed. After that, no
increase is established until the runtime limit of 360 s.

The NL demand ordering again outperforms HL, mainly be-
cause NL is able to locate critical parts of the network (i.e., iden-
tify an UCD) much better and faster. In Fig. 7(a), around 70% of
the problems are declared unsolvable by the UCD mechanism
for NL, and only slightly more than 50% for HL. On the easy

problems, BI-BJ-LL-NL proved that all problems are unsolv-
able after 104 s, BI-BJ-LL-HL after 205 s. After 360 s, BT-SP
is still not able to characterize 2% of the problems. This means
that the UCD mechanism does perform well also on problem in-
stances that require a lot of search to be proven infeasible, and
not only on “easy” cases, and that search space exploration is
most efficient for BI-BJ-LL-NL.

If we compare the search statistics on the problems identified
as impossible by all methods, we can clearly establish that the

FREI et al.: RESOURCE ALLOCATION IN COMMUNICATION NETWORKS USING ABSTRACTION AND CONSTRAINT SATISFACTION 315

TABLE II
COMPARISON OF ROUTING HEURISTICS IN A

CENTRALIZED QoS ROUTING SCENARIO

number of generated routes and backtracks are significantly
better for Bl-based algorithms, especially for those incor-
porating the UCD mechanism. For instance, after a runtime
of 30 s on the FUDI 1 set problems solved by all methods,
BI-BJ-LL-NL backtracked about 40 times fewer (this includes
backjumps) and generated over 25 times fewer routes than
BT-SP. These values are even higher for lower time thresholds,
and only very slightly decrease with time (37 and 24, respec-
tively, after 240 s).

The benefit of backjumping algorithms is greater for identi-
fying impossible problems than for solving feasible ones. This
is especially the case for BI-BJ-LL-NL applied to the FUDI 2
set of problems [Fig. 7(b)].

C. QoS Routing

We also evaluated the route ordering heuristics in an online
QoS routing scenario. In this case, the demands are not known
in advance and are allocated one after the other (if possible) by
a centralized state-based algorithm. Demand ordering heuristics
and backtracking algorithms are then not applicable. We com-
pared the three routing heuristics presented in Section IV (SP,
LL, WP), and the results are summarized in Table II for the same
23 000 problems and 6000 larger problems, as in Section VII.

These results show that LL performs very similarly to SP: for
the set of 23 000 problems, despite completely solving fewer
problems, LL allocated more demands in average than SP, had a
better remaining bandwidth connectivity, and used fewer band-
width resources. However, the differences are extremely slight.
The same can be observed on the 6000 larger problems: the only
change is that LL solves more problems and uses more band-
width, however, still has a better bandwidth connectivity. The
major difference between the two is runtime: LL is more than
twice faster than SP, despite the overhead of maintaining the
BIH. We see two explanations for this: 1) if a demand can be
allocated, LL allows to find a route faster because it limits the
search space to the lowest BI clustering the endpoints of the de-
mand and 2) LL knows before computing a route if one exists,
thereby saving time if a demand cannot be allocated, where SP
has to explore the network graph before asserting that a demand
cannot be allocated.

WP is clearly outperformed by both LL and SP in all domains.
While allocating fewer demands (and solving just half of the
problems that LL and SP solved), WP still uses more bandwidth
resources. The runtime is about twice longer than SP, which is

easy to explain: routes are more expensive to compute for WP
than for SP, because WP routes cannot be shorter than SP routes
by definition and, therefore, a bigger part of the network needs
to be explored.

These experiments show that the DVO heuristics are very ef-
ficient for the RAIN problem, and that they are mainly respon-
sible for the effectiveness of the proposed algorithms over ex-
isting methods, and even though LL performs very similar to SP
in the QoS routing scenario, it combines better with these DVO
heuristics.

D. A Priori Order Parameter Identification

The order parameter we previously used, the tightness as de-
fined in Section VII-A, is a parameter that can only be com-
puted when the problem is solved. We tried to identify other
types of tightness measures that can be computed on an un-
solved problem in order to estimate the difficulty of solving it.

A natural a priori order parameter is the min-required tight-
ness. It is based on the minimal demand load (MDL). The MDL
for a demand is the minimal amount of resources required to
satisfy it, that is its bandwidth requirement times its minimal
hop count. If we sum the MDL for all demands and divide the
result by the total bandwidth capacity, we get the min-required
tightness of the problem. Plots for this order parameter are given
in Fig. 8. Again, the curves display a clear phase transition be-
havior.4 The min-required tightness is, however, only a very raw
characterization, and we are looking into other types of mea-
sures that better capture the idea of tightness.

VIII. GENERALIZING THE BI PARADIGM TO

MULTIPLE CONCAVE METRICS

A resource metric is said to be concave if for any path
, where is the metric for link . Band-

width is typically a concave resource, however, there are others,
for instance, the number of connections routed over a link may
be limited, due to various factors, such as the number of allowed
identifiers of connections over a link (e.g., virtual path/connec-
tion identifiers in ATM). The links of a communication network
may belong to different operators. A demand may require to use
links under contract by one or a set of operators. This require-
ment corresponds also to a concave metric.

When there are multiple concave metrics to take into account,
it is possible to build a BIH for each metric and apply the pre-
sented techniques on one or the other BIH, or both. However,
the BI paradigm is straightforwardly generalized to integrate
multiple concave metrics into a connectivity cluster. In this con-
text, a demand is defined by a triple , where

is an array of concave QoS require-
ments. For a given metric, we say that if is harder
to satisfy than , i.e., if a link supports a demand requiring
resources of the -th metric, than it can support a demand re-
quiring . There is, therefore, a partial ordering on the QoS
requirements. For instance, suppose we have two metrics for

4Noteworthy, we see that after a min-required tightness of 0.9, the probability
drastically increases. This is normal, since in these regions, a solution can almost
only contain shortest routes, by definition of the order parameter.

316 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 2, FEBRUARY 2005

Fig. 8. Probability of finding a solution within 1 s, given the min-required tightness of the problems (23 000 random problems with 20 nodes, 38 links, and 80
demands).

which both a higher value means a harder constraint (e.g., band-
width). and are incomparable re-
quirements, since a link with [96, 12] available resources may
accommodate a demand with QoS , but not , and a link
with [48, 30] free resources supports a demand requiring
but not . However, for a requirement , we have

(since and), and (i.d.).
Given a QoS requirement , of which

each corresponds to a concave metric, after a set of demands
has been allocated, we call a connectivity cluster (CC) for a
node under , or the -CC for , the set of all nodes
of the network that can be reached from through links re-
specting the QoS constraints , including . A CC restricted
to one concave metric is then a BI. CCs have the same prop-
erties as BIs (see Section III), such as unicity, route existence,
and location. A connectivity cluster graph (CCG) for a set of re-
quirements (-CCG) is defined and built as the BIG. The
connectivity cluster hierarchy (CCH) for a set of concave re-
quirements sets is, however, a generalized version of the BIH.
Since there is only a partial order on the possible requirements
sets , father–child relations build a lattice instead of a tree.
Fig. 9 shows the CCH of a simple network for possible require-
ments . Two concave metrics
are, thus, taken into account. Each node of the network has two
fathers, one a [64, 12]-CC and one a [32, 20]-CC. As for the
BIH, there is a null resource requirement clustering
the whole network (it is not displayed in Fig. 9 since equal to

).
The construction and maintenance of a CCH is more com-

plex than for a BIH. Nevertheless, it allows to abstract resource
availability for several resource requirements at the same time,
and allows to use the heuristics for route and demand selec-
tion, with some adaptations. For instance, the LL heuristics se-
lects the shortest route within the lowest BI clustering the end-

Fig. 9. Connectivity cluster hierarchy of a small network with possible QoS
requirements f[64; 12]; [56;10]; [32;20]; [16;5]g.

points of the demand. However, the lowest CC clustering the
endpoints of a demand is not always univocally defined because
of the partial order on the QoS requirements. For instance, sup-
pose a demand in Fig. 9. Since its endpoints
are clustered in the same [16, 5]-CC, we know there is at least
one route satisfying . However, which is the lowest CC, [64,
12]-CC or [32, 20]-CC ? They both contain ’s end-
points, but are in incomparable levels in the CCH. LL applied
to selects the route through , whereas in route through

FREI et al.: RESOURCE ALLOCATION IN COMMUNICATION NETWORKS USING ABSTRACTION AND CONSTRAINT SATISFACTION 317

would be chosen. There are several solutions to this problem,
for instance metric serialization or combination. Metric serial-
ization amounts to imposing a precedence over the metrics. If
the first metric is preferred to the second, because it is consid-
ered more important to maintain the connectivity for it in the
network, then LL applies to because its value for the first
metric is higher. Typically, if one metric is sharable (a resource
is sharable if it can be simultaneously allocated to multiple con-
sumers, e.g., the operator constraint) and the other not (e.g.,
bandwidth), metric serialization should be conducted according
to the second metric, since it makes no sense to do load-bal-
ancing on sharable resources. Metric combination amounts to
selecting the shortest route within the subgraph composed of the
children of both candidates, in this case, the subgraph restricted
to nodes . The same techniques can be applied for
DVO-HL and DVO-NL.

Please note that the application scenario to multiple concave
metrics could be: links have certain levels of trust (security) and
demands have to be routed only over links of a certain minimum
trust. Furthermore, bandwidth is another consideration.

IX. APPLICATION OF BI TO OPTICAL NETWORKS

In this section, we briefly illustrate the application of the BI
paradigm to wavelength routed WDM networks which are ex-
tensively used as the backbone of the Internet. In a wavelength
routed WDM network, a lightpath (e.g., wavelength continuous
path without processing in the intermediate nodes) is first estab-
lished between two network nodes before communication takes
place. A lightpath may span multiple fiber links and must oc-
cupy the same wavelength on all the fiber links it traverses if
there are no wavelength converters. This property is known as
the wavelength continuity constraint. In order to satisfy a light-
path request in a wavelength routed WDM network, we not only
need to consider routing but the wavelength selection as well.
Given a set of connection requests, the problem of setting up
a lightpath by routing and assigning a wavelength to each con-
nection is called the routing and wavelength assignment (RWA)
problem. In this section, we propose a new RWA algorithm
using the BI paradigm. The algorithm proposed can be applied
to any WDM network with an arbitrary topology.

Define a network topology for a given WDM op-
tical network, where is the set of nodes, is the set of bidi-
rectional links, and is the set of wavelengths per fiber link. In
particular, the number of wavelengths corresponds to the band-
width of the optical link, and we will use the term wavelength in-
stead of bandwidth in the remainder of this section. Assume this
is a single fiber network without wavelength converters, then
the set of wavelengths on each fiber link is the same. Each con-
nection request needs to be allocated over a route and assigned
one wavelength. In particular, the network can be abstracted
into BIGs. Each BIG starts with one BI representing one
of the wavelengths and having the same topology as the
original WDM optical network. Hence, the BIG network model

can be obtained from a given net-
work topology as follows. The topology of is replicated

times denoted by . Each BIG is com-

Fig. 10. (a) Network topology G with three wavelengths on each fiber link.
(b) Corresponding BIGs are each composed of one BI, inside which all links
have a capacity of 1.

posed of one BI representing a wavelength and the link capacity
is 1. An example is shown in Fig. 10.

The RWA problem can be solved based on the BIG model
under different networking parameters, namely, static or dy-
namic traffic, single or multiple fiber links between node pairs,
with or without wavelength converters. Briefly, we first trans-
form the network topology into a BIG network model. Then, we
use the route existence property to decide if the request(s) can
be satisfied by checking if the two end nodes are in the same
BI of at least one BIG. If they are satisfied, in each BI, we do
the routing and wavelength selection and several heuristics are
employed to get the “best” routes and wavelengths. In the static
traffic case, a backtracking scheme is added to the algorithm to
get a more optimized result. A formal description of the pro-
posed algorithm is given below. We first assume the traffic is
static. So, we know all the connection requests a priori. Our
goal is to maximize the number of accepted requests given a
fixed number of wavelengths per fiber link.

Step 1) Transform the network topology into a BIG network
model.

Step 2) Order all the connection requests in decreasing
length of their minimum number of hops (MNHs)
distance (MNH distance is calculated using any SP
algorithm, e.g., Dijkstra). Paths with equal lengths
are ordered randomly.

Step 3) Select an unallocated request . If the
request set is empty, then go to Step 8).

Step 4) Use the Route existence property to check if all the
requests in can be satisfied individually in any
BIG. If it can, assign the request to each possible
wavelength BI and calculate alternate shortest
paths. If it cannot, go to Step 8).

Step 5) Route and Wavelength Selection: Now, we have a
set of candidate routes in each possible wavelength
BIG. Compute the splitting numbers if the corre-
sponding route is selected and removed from the

318 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 2, FEBRUARY 2005

BIs. Find the route(s) with the minimum splitting
numbers. The splitting number for a route means
that how many more BIs will be generated if the
route is removed from the current BIs. For example,
if a route is removed and the number of BIs is the
same as before, we say the splitting number for the
route is 0. If the number of BIs is one more than be-
fore, we say the splitting number for the route is 1.

If there are several routes, pick up one with the
shortest MNH distance.

If there are still a few routes, choose one whose
congestion of the most loaded link (most number
of wavelengths in the link has been used) is lower
than the congestion of the most loaded link in other
routes. Then, if there is more than one route left,
randomly select one.

Step 6) Allocate the route in corresponding BI. Reconstruct
the BIGs.

Step 7) Add the route and corresponding wavelength to the
result set , go to Step 3).

Step 8) If the request set is empty, output the result set.
Otherwise, output “requests cannot be satisfied.”

In order to get a more optimal result, a backtracking scheme
is added to the algorithm as long as time is allowed. In Step 4),
if not all the requests can be satisfied individually, instead of
going to Step 8), we backtrack to the previous request and try
another one of alternate routes. We repeat the process until
we succeed or all the alternate routes of previous requests are
tried. In Step 4), the route existence property checks whether
the current available resources can satisfy all single requests in

. In the backtracking process, it provides an early warning for
selecting the wrong route and wavelength.

If the connection requests arrive dynamically, we need to do
a few modifications to the original algorithm. For example, we
cannot order the requests and the backtracking scheme is im-
possible. The steps of the algorithm are given next.

Step 1) Transform the network topology into a BIG network
model.

Step 2) When a connection request arrives, based on the
arriving time of the request, reconstruct the BIGs.

Step 3) Check the request using the route existence prop-
erty in each BIG. If it exists in any possible wave-
length BIG, calculate alternate shortest paths; if
it does not exist in any BIG, it is blocked.

Step 4) Route and wavelength selection (the same as the
static case).

Step 5) Allocate the request and go to Step 2).

Because of the dynamic nature of the traffic and the different
holding times of each session, we need to update the BIGs every
time a new request arrives in Step 2).

At each step, updating the BIG has a worst case complexity
, where number of levels and number of links

in the network. This is the worst case when the BIH is com-
pletely transformed splitting number . It does not seem
that we can have a tighter bound even when we restrict the split-
ting number, because even with 2 BIs, it is still possible that all
links go between these two islands. Thus, when we apply the

TABLE III
SIMULATION RESULT N IS THE NUMBER OF NODES IN THE NETWORK. L IS

THE NUMBER OF LINKS IN THE NETWORK. WLL REPRESENTS THE LOWER

LIMIT ON THE NUMBER OF WAVELENGTHS. REFERENCE [20] IS THE

RESULT OF OUR IMPLEMENTATION OF THE ALGORITHM IN [20]

minimum splitting heuristic, the complexity for each demand
would be with being the number of paths tested (a
parameter of the algorithms in Section IX), and the complexity
for all demands is , where is the number of demands.

If we add backtracking, then the worst case complexity be-
comes exponential in the number of demands, with the average
case complexity being much lower.

Please note that our choice of a single-level BIHs is related
to the fact that our heuristic algorithms attempt to choose a path
that will avoid future conflicts.

For static traffic, one of the most important goals is to
minimize the number of wavelengths needed to accommodate
the given requests. The proposed BI RW A algorithm with
backtracking is applied to several existing or planned network
topologies to verify its efficiency. We assume the incoming
traffic is uniform. The networks considered are the ARPANet
[21], NSFNet [22], the European Optical Network (EON)
proposed in [23], and a hypothetical U.K. topology reflecting
the current BT-networks [24]. Noted, those topologies are
also evaluated in [20] and the results in [20] are near optimal.
Our simulation results are shown in Table III indicating the
minimum number of wavelengths needed for a given traffic
using different algorithms. As can be seen, the application of
the BI paradigm can lead to optimal or “near-optimal” results,
and sometimes compare favorably to those in [20]. Reference
[20] also proposes a method called WLL, based on bisection
bandwidth, to calculate the lower limit on the number of wave-
lengths.

We also evaluated the performance of our proposed dynamic
BI RW A algorithm on NSFNet, which has 14 nodes and 21
links. The heuristic dynamic RAW algorithms used in the
simulation are fixed routing with first-fit wavelength assign-
ment (FR/FF), fixed routing with most used/pack wavelength
assignment (FR/MU), alternate routing with most used/pack
wavelength assignment (AR/MU), and alternate routing with
random wavelength assignment (AR/RAN). These algorithms
are among the most reputed algorithms for dynamic traffic
allocation in WDM networks [22]. Figs. 11 and 12 compare
the call blocking probabilities for dynamic BI RW A, FR/FF,
FR/MU, AR/MU, and AR/RAN using the NSFNet network. In
the alternate routing algorithm, all the SPs are calculated for
each node pair. In Fig. 11, the number of wavelengths on each
link is four. In Fig. 12, the number of wavelengths on each link
is eight. Again, the simulation results favorably compare our
proposed algorithm to the related algorithms. This is a further
confirmation of the usefulness of the BI paradigm to various
network problems.

FREI et al.: RESOURCE ALLOCATION IN COMMUNICATION NETWORKS USING ABSTRACTION AND CONSTRAINT SATISFACTION 319

Fig. 11. Blocking probabilities for the NSFNet with four wavelengths.

Fig. 12. Blocking probabilities for the NSFNet with eight wavelengths.

X. CONCLUSION

In this paper, we have shown that using BI abstractions cou-
pled with CSP exhaustive search mechanisms and heuristics, it
is possible to solve the network bandwidth allocation problem
for many problem instances in reasonable time with a complete
search algorithm. We have also demonstrated that this method
gives better solutions than SP routing algorithms, markedly in
terms of the remaining bandwidth connectivity in the network
after all demands have been allocated. This is especially useful
when another unexpected demand needs to be routed, since the
likelihood of being able to route it without recomputing a full
solution from scratch is higher. Network operators (or service
providers) can now plan the allocation of bandwidth in much
tighter networks and more often than before. The BI paradigm
also proves to be very efficient in identifying infeasible prob-
lems very quickly, and thereby also constitutes a powerful aid to
the network operator, since the UCD mechanism highlights the
regions in the network between which bandwidth must be added
in order to be able to satisfy all demands. Moreover, a general-
ization of the BI paradigm, the connectivity clusters, to take into
account multiple concave QoS metrics has been proposed. Fi-
nally, we have illustrated the usefulness of the BI paradigm to
the routing and wavelength assignment problem in optical net-
works under a variety of networking scenarios.

We restricted demands to point-to-point traffic. However, the
same techniques can be applied for multipoint demands: routes
are then trees instead of simple paths. Generalizing the pre-
sented heuristics, such as the LL for route generation or the
number of levels for demand selection, to multipoint demands
is straightforward. In [1], we show additional applications of the
BI paradigm, such as a new graphical display of the network’s
state that highlight bottlenecks for improved human-machine in-
teraction, techniques for tuning network topology according to a
traffic profile based on explanation of allocation failure, on-line
routing by intelligent agents based on the BIH, faithful and con-
cise topology aggregation for hierarchical networks, and a novel
pricing scheme that can be extracted from the BIH.

We are also extending the application of the BI paradigm into
two directions, and the results will be presented in future papers.
First, we are looking into how to apply the BI techniques in con-
nection-less networks (such as IP). Second, we are investigating
how to incorporate nonconcave QoS metrics such as delay, delay
jitter, and packet loss probability into the BI paradigm.

ACKNOWLEDGMENT

The authors wish to express their thanks to D. Allemang,
S. Willmott, and M. Calisti for their invaluable comments, sug-
gestions, and encouragements during the last years. The authors
extend their gratitude to Prof. M. Golumbic for his proof of the
NP-completeness of the RAIN problem.

REFERENCES

[1] C. Frei, “Abstraction Techniques for Resource Allocation in Communi-
cation Networks,” Ph.D. dissertation, Swiss Fed. Inst. Technol. (EPFL),
Lausanne, Switzerland, 2000.

[2] Z. Wang and J. Crowcroft, “Analysis of shortest-path routing algorithms
in a dynamic network environment,” in Proc. ACM SIGCOMM CCR,
vol. 22, 1992, pp. 63–71.

[3] E. Tsang, Foundations of Constraint Satisfaction, London, U.K.: Aca-
demic, 1993.

[4] R. J. Wallace, “Practical applications of constraint programming,” Con-
straints An Int. J., pp. 139–168, 1996.

[5] G. R. Ash, Dynamic Routing in Telecommunications Networks. New
York: McGraw-Hill, 1998.

[6] S. Cosares and I. Saniee, “An optimization problem related to balancing
loads on SONET rings,” Telecommun. Syst., vol. 3, pp. 165–181, 1994.

[7] M. Herzberg, D. J. Wells, and A. Herschtal, “Optimal resource allocation
for path restoration in mesh-type self-healing networks,” Int. Teletraffic
Congr. (ITC), vol. 15, pp. 351–360, 1997.

[8] J. W. Mann and G. D. Smith, “A comparison of heuristics for
telecommunications traffic routing,” in Modern Heuristic Search
Methods. New York: Wiley, 1996, pp. 235–254.

[9] B. T. Messmer, “A framework for the development of telecommuni-
cations network planning, design and optimization applications,” Tech.
Rep. FE520.020 78.00 F, 1997. Swisscom.

[10] Z. Wang and J. Crowcroft, “Quality-of-service routing for supporting
multimedia applications,” IEEE J. Sel. Areas Commun., vol. 14, no. 7,
pp. 1228–1234, 1996.

[11] S. Chen and K. Nahrstedt, “An overview of quality of service routing for
next-generation high-speed networks: Problems and solutions,” IEEE
Netw., pp. 64–79, Nov./Dec. 1998.

[12] S. Vedantham and S. S. Iyengar, “The bandwidth allocation problem in
the ATM network model is NP-complete,” Inform. Process. Lett., vol.
65, pp. 179–182, 1998.

[13] B. Y. Choueiry and B. Faltings, “A decomposition heuristic for resource
allocation,” in Proc. 11th Eur. Conf. Artif. Intell., 1994, pp. 585–589.

[14] R. Weigel and B. Faltings, “Structuring techniques for constraint satis-
faction problems,” in Proc. 15th Int. Joint Conf. Artif. Intell., 1997, pp.
418–423.

320 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 2, FEBRUARY 2005

[15] E. C. Freuder and D. Sabin, “Interchangeability supports abstraction
and reformulation for multidimensional constraint satisfaction,” in Proc.
15th Nat. Conf. Artif. Intell., 1997, pp. 191–196.

[16] B. Y. Choueiry and T. Walsh, Eds., Lecture Notes in Artificial Intel-
ligence 1864. New York: Springer-Verlag, Jul. 2000, Proc. 4th Int.
Symp. Abstraction, Reformulation and Approximation.

[17] C. Frei and B. Faltings, “A dynamic hierarchy of intelligent agents
for network management,” in Lecture Notes in Artificial Intelligence
1437. New York: Springer-Verlag, 1998, Proc. 2nd Int. Workshop
Intell. Agents Telecommun. Applicat., pp. 1–16.

[18] R. M. Haralick and G. L. Elliott, “Increasing tree search efficiency for
constraint satisfaction problems,” Artif. Intell., vol. 14, pp. 263–313,
1980.

[19] P. Prosser, “Hybrid algorithms for the constraint satisfaction problem,”
Comput. Intell., vol. 9, no. 3, pp. 268–299, 1993.

[20] S. Baroni and P. Bayvel, “Wavelength requirements in arbitrarily con-
nected wavelength-routed optical networks,” IEEE/OSA J. Lightwave
Technol., vol. 15, no. 2, pp. 242–251, Feb. 1997.

[21] R. Ramaswami and K. N. Sivarajan, “Routing and wavelength assign-
ment in all-optical networks,” IEEE/ACM Trans. Netw., vol. 3, pp.
489–500, Oct. 1995.

[22] T. M. Tsang and K. Bala, Multiwavelength Optical Net-
works. Reading, MA: Addison-Wesley, 1999.

[23] M. J. O’Mahony, D. Simoneonidou, A. Yu, and J. Zhou, “The design of
a European optical network,” IEEE/OSA J. Lightwave Technol., vol. 13,
pp. 817–828, May 1995.

[24] S. Appleby and S. Steward, “Mobile software agents for control in
telecommunications networks,” British Telecom. Technol. J., vol. 12,
no. 2, pp. 104–113, Apr. 1994.

Christian Frei received the Diploma degree in com-
puter science and the Ph.D. degree from the Swiss
Federal Institute of Technology (EPFL), Lausanne,
Switzerland.

He is now a Scientist at the ABB Corporate
Research Center, Baden, Switzerland. His research
interests include constraint satisfaction, abstraction
and problem reformulation techniques, graph theory,
and resource allocation problems in general.

Dr. Frei received the 2000 ECCAI Artificial Intel-
ligence Dissertation Award for his Ph.D. dissertation

on abstraction techniques for constraint satisfaction, in particular, for applica-
tions in communication networks.

Boi Faltings received the Diploma degree in elec-
trical engineering from Swiss Federal Institute of
Technology (ETH) Zurich, Switzerland, and the
Ph.D. degree in computer science from the Univer-
sity of Illinois at Urbana–Champaign.

He founded the Artificial Intelligence Laboratory,
School of Computer and Communication Sciences,
Ecole Polytechnique Federale de Lausanne (EPFL),
Lausanne, Switzerland, in 1987 and from 1996
to 1998, he was Head of the Computer Science
Department, EPFL. He is a Professor of Computer

Science and Director of the Artificial Intelligence Laboratory. His research
interests are in constraint satisfaction, case- and model-based reasoning, as
well as applications in engineering and e-commerce.

Mounir Hamdi (S’89–M’90) received the B.S.
degree in computer engineering (with distinction)
from the University of Louisiana, Lafayette, in 1985
and the M.S. and the Ph.D. degrees in electrical
engineering from the University of Pittsburgh,
Pittsburgh, PA, in 1987 and 1991, respectively.

He has been a Faculty Member in the Department
of Computer Science, Hong Kong University of
Science and Technology since 1991, where he is now
a Professor of Computer Science and the Director of
the Computer Engineering Program that has around

350 undergraduate students. From 1999 to 2000, he held Visiting Professor
positions at Stanford University, Stanford, CA, and the Swiss Federal Institute
of Technology, Lausanne, Switzerland. His general areas of research are in
high-speed packet switches/routers and all-optical networks, in which he has
published more than 200 research publications, received numerous research
grants, supervised some 20 postgraduate students, and for which he has served
as consultant to various international companies. Currently, he is working on
high-speed networks including the design, analysis, scheduling, and manage-
ment of high-speed switches/routers, wavelength-division multiplexing (WDM)
networks/switches, and wireless networks. He is currently leading a team that
is designing one the highest capacity chip sets for terabit switches/routers. This
chip set is targeted toward a 256� 256 OC-192 switch, and includes a crossbar
fabric chip, a scheduler/arbiter chip, and traffic management chip. In addition
to his commitment to research and professional service, he is also a dedicated
teacher.

Dr. Hamdi is a member of the Association for Computing Machinery (ACM).
He received the Best Paper Award at the International Conference on Infor-
mation and Networking in 1998 out of 152 papers. He received the Best Ten
Lecturers Award (through university-wide students voting for all university fac-
ulty held once a year) and the Distinguished Teaching Award from the Hong
Kong University of Science and Technology. He is/was on the Editorial Boards
of the IEEE TRANSACTIONS ON COMMUNICATIONS, the IEEE Communication
Magazine, Computer Networks, Wireless Communications and Mobile Com-
puting, and Parallel Computing. He has been on the program committees of
more than 50 international conferences and workshops. He was a Guest Ed-
itor of the IEEE Communications Magazine, the IEEE JOURNAL ON SELECTED

AREAS OF COMMUNICATIONS, and Optical Networks Magazine, and has Chaired
more than five international conferences and workshops including the IEEE
GLOBECOM/ICC Optical Networking Workshop, the IEEE ICC High-Speed
Access Workshop, and the IEEE IPPS HiNets Workshop. He is the Chair of
IEEE Communications Society Technical Committee on Transmissions, Ac-
cess, and Optical Systems, and Vice Chair of the Optical Networking Technical
Committee, as well as ComSoc Technical Activities Council.

.

	toc
	Resource Allocation in Communication Networks Using Abstraction
	Christian Frei, Boi Faltings, and Mounir Hamdi, Member, IEEE
	I. I NTRODUCTION
	II. R ELATED W ORK

	Fig. 1. BIH for resource requirements $\{64, 56,16\}$. The weig
	III. B LOCKING I SLAND (BI) P ARADIGM
	Proposition 1 Route Existence Property: There is at least one ro

	Fig.€2. Abstraction tree of the BIH of Fig.€1 (links are omitted
	IV. R OUTING F ROM A BI P ERSPECTIVE
	V. A UTOMATICALLY S OLVING A RAIN P ROBLEM
	A. Forward Checking (FC)
	B. Value Ordering

	Fig.€3. Selecting the next demand to allocate using DVO-HL and D
	C. Variable Ordering

	Fig.€4. Forward checking algorithm FCRAIN for the RAIN problem.
	D. FC Algorithm for the RAIN Problem
	VI. C ONFLICT I DENTIFICATION AND R ESOLUTION
	A. Unresolvable Problem Identification
	B. Culprit Assignment Identification

	VII. E MPIRICAL R ESULTS
	A. Solving Feasible RAIN Problems
	B. Performance Evaluation on Infeasible RAIN Problems

	Fig.€5. Statistics on solving 23 000 randomly generated solvable
	Fig.€6. Probability of solving a problem according to runtime (6
	TABLE I C OMPARISON IN T ERMS OF R UNTIME (S), G ENERATED R OUTE
	Fig.€7. Percentage of problems identified as infeasible accordin
	TABLE II C OMPARISON OF R OUTING H EURISTICS IN A C ENTRALIZED Q
	C. QoS Routing
	D. A Priori Order Parameter Identification
	VIII. G ENERALIZING THE BI P ARADIGM TO M ULTIPLE C ONCAVE M ETR

	Fig.€8. Probability of finding a solution within 1 s, given the
	Fig.€9. Connectivity cluster hierarchy of a small network with p
	IX. A PPLICATION OF BI TO O PTICAL N ETWORKS

	Fig.€10. (a) Network topology G with three wavelengths on each
	TABLE III S IMULATION R ESULT N I S THE N UMBER OF N ODES IN T
	Fig.€11. Blocking probabilities for the NSFNet with four wavelen
	Fig.€12. Blocking probabilities for the NSFNet with eight wavele
	X. C ONCLUSION
	C. Frei, Abstraction Techniques for Resource Allocation in Commu
	Z. Wang and J. Crowcroft, Analysis of shortest-path routing algo
	E. Tsang, Foundations of Constraint Satisfaction, London, U.K.:
	R. J. Wallace, Practical applications of constraint programming,
	G. R. Ash, Dynamic Routing in Telecommunications Networks . New
	S. Cosares and I. Saniee, An optimization problem related to bal
	M. Herzberg, D. J. Wells, and A. Herschtal, Optimal resource all
	J. W. Mann and G. D. Smith, A comparison of heuristics for telec
	B. T. Messmer, A framework for the development of telecommunicat
	Z. Wang and J. Crowcroft, Quality-of-service routing for support
	S. Chen and K. Nahrstedt, An overview of quality of service rout
	S. Vedantham and S. S. Iyengar, The bandwidth allocation problem
	B. Y. Choueiry and B. Faltings, A decomposition heuristic for re
	R. Weigel and B. Faltings, Structuring techniques for constraint
	E. C. Freuder and D. Sabin, Interchangeability supports abstract
	B. Y. Choueiry and T. Walsh, Eds., Lecture Notes in Artificial I
	C. Frei and B. Faltings, A dynamic hierarchy of intelligent agen
	R. M. Haralick and G. L. Elliott, Increasing tree search efficie
	P. Prosser, Hybrid algorithms for the constraint satisfaction pr
	S. Baroni and P. Bayvel, Wavelength requirements in arbitrarily
	R. Ramaswami and K. N. Sivarajan, Routing and wavelength assignm
	T. M. Tsang and K. Bala, Multiwavelength Optical Networks . Read
	M. J. O'Mahony, D. Simoneonidou, A. Yu, and J. Zhou, The design
	S. Appleby and S. Steward, Mobile software agents for control in

